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Abstract
A general pattern theorem for weighted self-avoiding polygons (SAPs) and self-
avoiding walks (SAWs) in Z

2 is obtained. The pattern theorem for SAPs fits into
the general framework of the pattern theorem for lattice clusters introduced by
Madras (1999 Ann. Comb. 3 357–84) . Note that, unlike other pattern theorems
proved for SAPs, this pattern theorem does not rely on first establishing a
relationship between SAPs and SAWs. These results are applied to obtain
pattern theorems for self-interacting SAPs and self-interacting SAWs.

PACS numbers: 05.50.+q, 05.70.Fh, 61.25.Hq

1. Introduction

Self-avoiding walk (SAW) and self-avoiding polygon (SAP) lattice models are known to
be useful statistical mechanics models for studying the phase behaviour and asymptotic
(as polymer size grows) configurational properties of linear and ring polymers in solution
respectively [1–3]. One advantage of these models is that it has been possible to prove
rigorous results about partition functions, especially in the large polymer limit. In this regard,
one of the most powerful mathematical tools is a ‘pattern theorem’. One such theorem, due
to Kesten [4], is for self-avoiding walks in Z

d , d � 2, and states: for an appropriately defined
pattern P, there exists an ε > 0 such that all but exponentially few sufficiently long n-step
self-avoiding walks contain the pattern P at least εn times. Kesten’s pattern theorem has been
used, for example, to establish results about knotting probabilities for self-avoiding polygons
in Z

3 [5] and to help establish relationships between entropic critical exponents for various
lattice models [6].

More recently, Madras [7] has developed a general pattern theorem that holds for sets
of lattice clusters (finite subgraphs of a lattice) that satisfy a set of axioms. For a suitable
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set of clusters and pattern P it states that: there exists an ε > 0 such that the limiting (as
n → ∞) free energy per monomer for size n clusters which contain less than εn translates
of P is strictly less than that for the full set of size n clusters. This theorem [7, theorem 2.1],
referred to herein as the Madras pattern theorem, was shown in [7] to be applicable for several
sets of ‘interacting’ (or weighted) clusters on a variety of lattices (including Z

d , d � 2). For
example for d � 2, the full set of axioms is shown to hold for the set of self-interacting bond
animals in the hypercubic lattice Z

d , in which the interaction energy is proportional to the
number of nearest-neighbour contacts (see [7, proposition 3.1]); hence the Madras pattern
theorem follows for this set of weighted clusters. The arguments presented in [7] do not,
however, establish that the full set of axioms holds for SAWs or SAPs. In fact, one of the
axioms (namely (CA4)) used in [7, theorem 2.1] cannot be satisfied for self-avoiding walks
[7] in Z

d , d � 2. Note, however, that the full set of axioms has recently been proved to hold
for SAPs in pseudo-one-dimensional sublattices of Z

3 known as tubes or prisms [9].
In this paper, we establish a general pattern theorem for weighted self-avoiding polygons

in the square lattice, Z
2, by showing that the axioms defined in [7] hold for this set of clusters.

In addition, we relax one of the axioms and note that a modified general pattern theorem still
holds; this allows us to establish a general pattern theorem for weighted square lattice self-
avoiding walks. The new pattern theorem for SAPs has the advantage that its proof does not
rely on establishing any relationships between weighted SAPs and weighted SAWs, in contrast
to previous approaches for establishing pattern theorems for SAPs [1, 3]. For example, the
previously cited applications of Kesten’s pattern theorem to self-avoiding polygons [5, 6] each
rely on the fact that the limiting entropy per site for self-avoiding polygons (or exponential
growth rate of the number of self-avoiding polygons) is equal to that for self-avoiding walks.
Hence the pattern theorem for SAPs established herein can be applied to cases for which it
is not known whether the limiting free energies for SAWs and SAPs are equal, as is the case
for example, when the interaction energy is proportional to the number of nearest-neighbour
contacts [3, 8], i.e. for self-interacting SAPs. The SAP results can also be extended to obtain
a pattern theorem for self-interacting SAWs.

The first goal of this paper is to establish cluster axiom 4 (CA4) of [7] for square lattice
SAPs. That is, roughly speaking, we show that, given an appropriately defined (i.e. proper)
SAP pattern P and an arbitrary vertex y in an arbitrary polygon ω, one can insert P into ω

at a location near y. For appropriate choices of weights (i.e. those satisfying cluster axiom 2
(CA2) of [7]), this will then imply the Madras pattern theorem [7, theorem 2.1].

Establishing (CA4) for square lattice SAPs requires a constructive argument. In order
to virtually eliminate the detailed case analysis which might otherwise be required, we take
advantage of the detailed case analysis on the square lattice that was employed in a recent
paper [6]. In [6], combinatorial bounds were derived which related the number of open or
closed n-step trails with a fixed number of vertices of degree 4 to the number of n-step self-
avoiding walks (n-SAWs) or n-edge self-avoiding polygons (n-SAPs), respectively. In order
to accomplish this, it was first established, via a detailed case analysis, that it was possible to
remove vertices of degree 4 ‘locally’ from a trail (or rather its underlying graph) to ultimately
obtain either a SAP or a SAW in Z

2. In this paper, the closed trail results [6, lemma 7] are
used to establish (CA4) for self-avoiding polygons in Z

2.
Our second goal will be to establish a modified version of (CA4) for SAWs in Z

2. Based
on [6, lemma 8] and the arguments used to establish that (CA4) holds for SAPs, a modified
version of (CA4) is shown to hold for USAWs (undirected SAWs); the modification needed
is that the set of all proper patterns is replaced by the set of proper SAP patterns. Then, the
proof of the Madras pattern theorem in [7] implies that its consequences will also hold for
USAWs, provided the patterns are restricted to the proper SAP patterns. From this, the fact
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that each USAW corresponds to two distinct SAWs allows the pattern theorem for USAWs to
be extended immediately to a pattern theorem for SAWs.

These results then give, for example, pattern theorems for interacting SAPs and SAWs with
interaction energy proportional to the number of nearest-neighbour contacts. Applications of
these results to the study of open and closed trails with a fixed number of vertices of degree 4
will be presented in a subsequent paper.

The paper is structured as follows. In the next section, the notation, cluster axioms
and the Madras pattern theorem from [7] are briefly reviewed. In section 3, the necessary
definitions for our main results are introduced and the lemmas needed to establish the new
pattern theorems of this paper are stated and proved. Finally, in section 4 some applications
to interacting SAPs (ISAPs) and SAWs (ISAWs), with interaction energy proportional to the
number of nearest-neighbour contacts, are explored.

2. Brief overview of the Madras general pattern theorem

Unless stated otherwise, the terminology and notation follow that given in [6] and [7] with
dimension d = 2. In particular for G a subgraph of Z

2, V (G) (or VG) and E(G) (or EG) are
used to denote the vertex set and edge set of G, respectively. For convenience, we give a brief
review of Madras’ notation and general pattern theorem results and refer the reader to [7] for
the complete details.

Let Cn denote a set of size n clusters (finite subgraphs) of a lattice L. For example, clusters
may be SAPs with their size measured by the number of edges in the SAP.

A set of clusters, Cn, which is invariant under translations on L is said to satisfy the first
cluster axiom (CA1).

Let C∗
n denote a subset of Cn that contains exactly one translate of each cluster in Cn.

Let wt be a weight function, wt : C<∞ → (0,∞), that assigns a positive weight to each
cluster in C<∞ = ∪∞

n=1Cn and that is invariant under translation. The second cluster axiom
(CA2) is satisfied if for each m � 0 there is a finite positive constant γm with the property that

1

γm

wt(G) � wt(G′) � γmwt(G), (2.1)

whenever G and G′ differ by at most m vertices and edges.
Let Gn denote the weighted sum of all clusters of size n (up to translation),

Gn =
∑

G∈C∗
n

wt (G), (2.2)

and define

λ = lim sup
n→∞

(Gn)
1
n . (2.3)

The third cluster axiom (CA3) is that limn→∞(Gn)
1
n exists and is finite (and equals λ).

We consider very general patterns as defined in [7] so that a pattern can exclude some
lattice edges and vertices as well as include others. Specifically, given the lattice L, an ordered
pair P = (P1, P2) is a pattern for any pair of finite disjoint subsets, P1 and P2, of V (L)∪E(L)

(the union of the vertex set and edge set of the lattice L), with P1 nonempty. Note that
Pi(i = 1, 2) need not be a subgraph of L since knowing that the edge {v,w} ∈ Pi does not
necessarily imply that the vertices v and w are in Pi . A cluster in Cn is said to contain a
pattern P if it contains all the vertices and edges in P1 and none of the vertices and edges in
P2. If one is only interested in patterns consisting of vertices and edges that actually occur in
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U1

U2

(a) (b)

V1

V2

Figure 1. Two examples of proper SAP patterns: (a) pattern U = (U1, U2) where U1 consists of
the solid edges and circles and U2 consists of the open circles, and (b) pattern V = (V1, V2) where
V1 is the solid edges and circles and V2 is the open circles.

a cluster, then one can set P2 = ∅. See figures 1(a) and (b) for two examples of patterns with
respect to the set of SAPs in L = Z

2.
Given a set of clusters C<∞, P = (P1, P2) is called a proper pattern with respect

to C<∞ if there are infinitely many values of n such that P is contained in some size n
cluster. For L = Z

2 and Cn equal to the set of square lattice n-edge SAPs, the proper
patterns with respect to C<∞ are referred to as proper SAP patterns. (The patterns given in
figures 1(a) and (b) are each examples of proper SAP patterns.) Note that any subgraph P̃

obtained from a Kesten pattern by ignoring the orientation of its edges (see, for example,
section 3 of [6]) can be represented by the proper pattern P = (VP̃ ∪ EP̃ ,∅), where ∅ is the
empty set.

Let P be the set of proper patterns associated with C<∞. We further define a pattern
P ∈ P to be a Madras pattern with respect to C<∞ if the following is true. There exists a
finite set D of vertices and edges of L which contains P and has the following property: for
every cluster G ∈ C<∞ and every vertex y in G, there is another cluster G′ and a translation
vector t (dependent on y) such that y ∈ D + t,G′ contains P + t , and G′\(D + t) = G\(D + t).
That is, one can obtain from G a new cluster G′ which contains a translate of P within a fixed
distance from y such that G′ differs from G only within D + t .

Given a set of clusters C<∞, the fourth cluster axiom (CA4) can now be simply stated as
follows: every proper pattern P is a Madras pattern with respect to C<∞.

Theorem 1 (Madras [7]). Assume that cluster axioms (CA1), (CA2) and (CA4) hold for a set
of clusters C<∞. Let P be a proper pattern. Let Gn[�m,P ] be the weighted sum of the set of
clusters in C∗

n which contain at most m translates of P. Then there exists an ε > 0 such that

lim sup
n→∞

(Gn[� εn, P ])
1
n < λ. (2.4)

We will need to relax the assumption of (CA4), i.e. that every proper pattern must be
a Madras pattern. This is possible as a direct consequence of the results presented in [7].
Namely, the proof of theorem 1 in [7, theorem 2.1] implies the following corollary.

Corollary 1. Assume that cluster axioms (CA1) and (CA2) hold for a set of clusters C<∞. Let
P be a Madras pattern. Let Gn[�m,P ] be the weighted sum of the set of clusters in C∗

n which
contain at most m translates of P. Then there exists an ε > 0 such that

lim sup
n→∞

(Gn[� εn, P ])
1
n < λ. (2.5)
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3. New pattern theorems for SAPs and SAWs

An n-step self-avoiding walk, ω, in the square lattice Z
2 is a sequence of n distinct edges

α1, α2, . . . , αn in E(Z2) such that αi = {si−1, si} for i = 1, . . . , n and s0, s1, . . . , sn are distinct
vertices in V (Z2). The n-SAW ω is said to start at s0 and end at sn and, for i = 1, . . . , n, the
edge from si−1 to si is called the ith step of the walk. The number of n-SAWs in Z

2 starting
at the origin is denoted by cn. For a given n-SAW σ , there is a corresponding reverse SAW
rev(σ ) ≡ (αn, αn−1, . . . , α1) and {σ, rev(σ )} forms a set of 2 distinct n-SAWs originating
from σ . This set of n-SAWs can be regarded as a single geometrical entity, which is called
an n-edge undirected self-avoiding walk (n-USAW). Equivalently an n-USAW is a connected
n-edge, (n + 1)-vertex subgraph of Z

2 in which all vertices have degree at most two. Two
n-USAWs are considered equivalent if one is a translate of the other. The number of distinct
n-USAWs in Z

2 is denoted by un. Note that cn = 2un.
For any positive even integer n, an n-step self-avoiding circuit (n-SAC) σ is a sequence

of n distinct edges α1, α2, . . . , αn in E(Z2) such that αi = {si−1, si} for i = 1, . . . , n, sn = s0

and s0, s1, . . . , sn−1 are distinct vertices in V (Z2). The number of n-SACs in Z
2 starting at

the origin is denoted by qn. The n-SAC rev(σ ) ≡ (αn, αn−1, . . . , α1), obtained by reversing
the order of σ ’s edges, is referred to as the reverse SAC of σ . For any i = 1, . . . , n, the n-
SAC cycsi−1

(σ ) ≡ (αi, αi+1, . . . , αn, α1, α2, . . . , αi−1), obtained from an n-SAC σ by a cyclic
permutation of its edges, is referred to as the cyclic permutation of σ starting at si−1. For a
given n-SAC σ , {cycsi−1

(σ ), cycsi−1
(rev(σ )), i = 1, . . . , n} forms a set of 2n distinct n-SACs

originating from σ . This set of n-SACs can be regarded as a single geometrical entity, which is
called an n-edge self-avoiding polygon (n-SAP). Equivalently an n-SAP is a connected n-edge,
n-vertex subgraph of Z

2 in which each vertex has degree two. Two n-SAPs are considered
equivalent if one is a translate of the other. The number of distinct n-SAPs in Z

2 is denoted
by pn. Note that qn = 2npn.

We also refer to any finite connected subgraph of Z
2 with no (exactly two) odd degree

vertices as a closed (open) eulerian embedding.
With regard to a general pattern theorem, the main clusters of interest here are SAPs and

hence we let Cn denote the set of square lattice SAPs with n edges, and C∗
n be the set of

all elements of Cn whose lexicographically smallest vertex is the origin. Thus the number
of square lattice n-edge SAPs (up to translation) is given by pn = |C∗

n |, with n even. Since
the square lattice is invariant under all translations in Z

2 then cluster axiom 1 (CA1) of [7]
is satisfied. As discussed in [7], cluster axiom 2 (CA2) holds for a wide class of weight
functions. Thus we are interested in establishing cluster axiom 4 (CA4) of [7] for SAPs. For
this, we show next that it is possible to insert any properly defined SAP pattern at (roughly)
an arbitrary location in an arbitrary square lattice SAP.

First define the square R(a, b,M) to be the subgraph of Z
2 induced by the vertex set

{v = (v1, v2) ∈ V (Z2)|a � v1 � a + M,b � v2 � b + M} for a, b ∈ Z and non-negative
integer M; M is referred to as the side-length of the square. The boundary of the square
R(a, b,M) is denoted by ∂R(a, b,M) and defined to be the subgraph of Z

2 induced by the
vertex set {v = (v1, v2) ∈ V (R(a, b,M))|v1 ∈ {a, a + M} or v2 ∈ {b, b + M}}.

The next lemma establishes (CA4) for SAPs.

Lemma 1. Every proper SAP pattern P = (P1, P2) is a Madras pattern with respect to the
set of all finite size self-avoiding polygons in Z

2. That is, given any SAP G and vertex y in
G, it is possible to insert a translate of the pattern P into G at a position which is ‘near’ the
vertex y.
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The details of the proof are given after the proof of lemma 3. However, an outline of
the proof is as follows: delete all edges and vertices of G lying inside a prespecified square
centred at vertex y; reconnect the resulting subgraph by making changes near the boundary of
the square to produce a new connected subgraph, G̃, having only even degree vertices (vertices
of degree 4 are allowed); next, in order to insert the pattern P into the embedding, translate
(using translation vector t) a polygon containing P into the square and then concatenate it to
G̃; finally, create a SAP G′ by removing any vertices of degree 4 (by applying [6, lemma 7])
without affecting the pattern. The set D required for P to be a Madras pattern is then defined
so that D + t is the subgraph of the lattice where changes were made to G.

As pointed out in [7], lemma 1 does not hold for SAWs or USAWs. This is due to the fact
that end patterns (patterns which can only appear either at the start or end of a walk) would
fall into the class of proper patterns for USAWs. However, it is clearly not possible to insert
an end pattern at an arbitrary location in a USAW. Instead, we prove a modified version of
lemma 1, namely that it is possible to insert any proper SAP pattern at an arbitrary location
in a USAW. With this, corollary 1 then establishes that a pattern theorem (i.e. equation (2.4))
holds for USAWs with the applicable pattern set restricted to the set of proper SAP patterns.
The modified version of lemma 1 is as follows.

Lemma 2. Every proper SAP pattern P = (P1, P2) is a Madras pattern with respect to the
set of all finite size undirected self-avoiding walks (USAWs) in Z

2. That is, given any USAW
G and vertex y in G, it is possible to insert a translate of the pattern P into G at a position
which is ‘near’ the vertex y.

The method of proof for both lemmas 1 and 2 is essentially the same with some minor
modifications needed for the USAW case. Hence, we prove both these lemmas at the same
time with the required USAW case modifications set off in square brackets. The proof in either
case requires that the following lemma be established first. Essentially this lemma allows for
the erasure of a region containing y in order to make room for inserting the pattern P.

Lemma 3. Given any SAP [USAW] G in Z
2 and any vertex y = (y1, y2) in VG, let

DN ≡ R(y1 − N/2, y2 − N/2, N) (a square centred at y with even sidelength N) for any
N > 0. Then for every even N � 6 such that V∂DN

∩ VG 
= ∅ [and VDN
does not contain any

degree one vertices of the USAW], there is a closed [open] Eulerian embedding G̃ in Z
2 such

that G\DN = G̃\DN and VG̃ ∩ VDN−6 = ∅. Also, any vertices of degree greater than 2 in G̃

are either in ∂DN or ∂DN−2 or or ∂DN−4.

Proof. Let G, y,N and DN be as in the statement of the lemma (see, for example,
figure 2(a)). Since y ∈ VG and V∂DN

∩ VG 
= ∅, it follows that V∂DK
∩ VG 
= ∅ for all

K � N .
Denote the four corners of ∂DN by �N ≡ {(y1 − N/2, y2 − N/2), (y1 − N/2, y2 +

N/2), (y1 + N/2, y2 − N/2), (y1 + N/2, y2 + N/2)}.
Now, we define the procedure for constructing G̃. First, remove all the edges of G in

DN except for those incident on the four corner vertices in �N . Then remove any resulting
isolated vertices to create a subgraph G1 of G (see, for example, figure 2(b)). Note that G1

may be empty, however, this does not change our construction of G̃.
G1 may now have vertices of odd degree [beyond the two outside DN ] and it is not

necessarily connected. The ultimate goal is to create a connected graph G̃ having no odd
degree vertices [beyond the two outside DN ] and which is the same as G1 outside DN . To
do this, we need to examine the connectedness of G1 and some properties of its odd degree
vertices.
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∂DN

G

y

∂DN

∂DN−2

∂DN−4

∂DN−6

G1

y

∂DN

∂DN−2

G2

v2

v1

y

∂DN

∂DN−2

G3

v2

v1

y

∂DN

∂DN−2

∂DN−4

G4

y

∂DN

∂DN−2

∂DN−4

∂DN−6

G̃

y

(a) (b)

(c) (d)

(e) (f )

Figure 2. Example construction for the proof of lemma 3: begin with (a) SAP G and, in the
following order, transform to (b) G1, (c) G2, (d) G3, (e) G4 and then (f) eulerian embedding G̃. In
(c), v1 ∈ �N−2 is corner vertex X as in figure 3(a) and v2 is X in figure 3(b).

By the definition of G1, we can say the following about the degree of any vertex v ∈ VG1 .
If v /∈ V∂DN

\�N , then degG1
(v) = degG(v). In particular, for v ∈ VG1 ∩ �N, degG1

(v) =
degG(v) = 2. If v ∈ V∂DN

\�N then either v is a neighbour to a corner in �N and
degG1

(v) ∈ {1, 2} or else v is not a neighbour to a corner and degG1
(v) must be one. If

degG1
(v) = 2 then clearly degG1

(v) = degG(v) (since G is a SAP [USAW]).
Note that for any graph the number of odd degree vertices is even. Furthermore, since

V∂DN−2 ∩ VG 
= ∅, if VG1 
= ∅ then there must be at least one odd degree vertex, w0 say, in
VG1 ∩ (V∂DN

\�N). Finally, for each vertex v ∈ VG1 there is a path in G1 from v to an odd
degree vertex in V∂DN

\�N . To see why this last claim is true, suppose v ∈ VG1 is not itself an
odd degree vertex in V∂DN

\�N . Consider a path in G from v to w0, denoted by the sequence
of vertices (v,wj , . . . , w1, w0) with j � 0; such a path exists because G is connected and, by
the choice of v, it must have length at least one. Consider the smallest value of l such that the
path (v,wj , . . . , wl) is in G1. Note that the edge {wl+1, wl} ∈ EG1 while {wl,wl−1} /∈ EG1 .
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//

//

//

////

//

// //

∂DN∂DN

YY

YY

// ////

//

//

//

//

//

//

∂DN∂DN

YY

YY

(a)

(b)

Figure 3. The corner transformations needed to create G3 from G2 in the proof of lemma 3. The
vertex marked (×) is an odd degree vertex X in �N−2 ∩ VG2 . Solid edges and vertices in the
configurations shown on the left are edges and vertices in G2; hash marks and open circles indicate,
respectively, edges and vertices which are not unoccupied. The configurations on the right are
the transformations needed for constructing G3 from G2 in the two cases (a) Y ′ ∈ V (G2) and
(b) Y ′ /∈ V (G2).

Therefore, degG1
(wl) = 1, and hence there is a path in G1 from v to an odd degree vertex in

V∂DN
\�N .

Next, create a new subgraph G2 of Z
2 by adding an edge from each odd degree vertex in

VG1 ∩ ∂DN to its square lattice neighbour in ∂DN−2 (this is possible because the corners of
∂DN have the same degree in G1 as in G and hence necessarily have even degree). (See an
example of G2 in figure 2(c).)

Thus all vertices in G2 have degree one or two, its odd degree vertices [beyond the two
outside DN ] are in ∂DN−2, and there are no edges of G2 in ∂DN−2. Furthermore all the vertices
of G2 in ∂DN−2 have degree one except possibly the corner vertices �N−2. For example, the
corner vertex (y1 − (N − 2)/2, y2 − (N − 2)/2) would have degree two if the neighbours of
(y1 − N/2, y2 − N/2) in ∂DN both had degree one in G1. (For example in figure 2(c), see
the vertex in the bottom left corner of ∂DN−2.)

For the next step of the construction of G̃, we need to create a graph G3 from G2 having
no edges in ∂DN−2 and only even degree corner vertices �N−2. Suppose that there is a
corner vertex X in �N−2 ∩ G2 with odd degree (ie degree one) in G2. Then X is joined by an
edge in G2 to exactly one vertex, say Y, and it is in ∂DN . This is illustrated (modulo lattice
symmetries) in figure 3, where X is marked by a cross (×). For the construction of G3, we
only need to consider whether the vertex Y ′ = X + (X − Y ) ∈ Z

2 is occupied in G2 or not.
These two cases lead respectively to the configurations shown on the left in figures 3(a) and
(b). The transformations indicated on the right of these figures can then be performed so that
the corner vertex X now has even degree (degree two). This results in a new subgraph, G3,
in which every vertex in G3 is joined by a path in G3 to a vertex in ∂DN−2 and there are no
edges of the graph in ∂DN−2, as desired. By this construction, neighbours of the corners �N
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MP

MP

P1

P2

P

(aP , bP )

r

Figure 4. An example of ωP associated with pattern P = (P1, P2). P1 is the bold U-shaped
USAW, P2 consists of the open circles, and the bold edge at the bottom left is the required edge in
∂R(aP , bP ,MP ) (as in the definition of ωP ).

in ∂DN may have degree 4 in G3. (For an example of this construction see figures 2(c) and (d)
where the vertex v1 is in the configuration of figure 3(a) and vertex v2 is in the configuration
of figure 3(b).)

Next add in every edge of ∂DN−2 to create a connected subgraph G4. Note that it is
possible that a vertex of degree 4 will be created at a corner of ∂DN−2. Then, to create G5,
add an edge from ∂DN−2 to ∂DN−4 for each vertex of VG4 ∩ ∂DN−2 of odd degree (recall that
the corner vertices of �N−2 ∩ VG4 have even degree). Since there must be an even number of
odd degree vertices, we can now connect them up in pairs, by proceeding clockwise around
∂DN−4 starting at the top-most left-most odd degree vertex. Each time an odd degree vertex
is encountered it is connected to the next odd degree vertex using a path in ∂DN−4. Call
the resulting embedding G̃. Clearly G̃ has all [except for the two end vertices of the USAW
which were untouched] even degree vertices and is connected and thus it is a closed [open]
eulerian embedding in Z

2. Finally, the construction also guarantees that G\DN = G̃\DN and
VG̃ ∩ VDN−6 = ∅, and the only vertices of degree 4 introduced are in ∂DN ∪ ∂DN−2 ∪ ∂DN−4.

�

In order to prove lemmas 1 and 2, we need some additional notation. Let P = (P1, P2) be
a proper SAP pattern. Since P is proper, there must exist at least one choice of a ∈ Z, b ∈ Z,
integer m � 1, and an associated SAP, ω, such that the following conditions hold: (1) ω

contains P and is a subgraph of the square R(a, b, 2m); (2) P2 is composed of vertices and
edges of R(a, b, 2m) and no edges or vertices of either P1 or P2 are contained in ∂R(a, b, 2m);
and (3) the edge from the vertex (a, b) to the vertex (a, b + 1) is in ω. Fix any (but preferably
one in which m is as small as possible) a, b,m, and ω satisfying these conditions and set
aP = a, bP = b,MP = 2m, and ωP = ω. (See for example figure 4 with P1 being the thick
walk and P2 the two empty sites surrounded by P1.)



8630 E W James and C E Soteros

We need also one more lemma that follows immediately from the proofs in [6, lemma 7,
lemma 8]. This will be stated for closed Eulerian embeddings with the required open Eulerian
embedding modifications set off in square brackets.

Lemma 4 (James and Soteros [6]). Let M = 10 [M = 12] and let σ be any closed [open]
Eulerian embedding in Z

2 with l vertices of degree 4. Let ξi ∈ Z
2, i = 1, . . . , l denote the

locations of the l vertices of degree 4. Then there exists a SAP [USAW] ω̃ such that ω̃ = σ

everywhere outside a set of squares of sidelength M centred at the vertices of degree 4, ie
ω̃ = σ in Z

2∖ ∪l
i=1 (ξi + R(−M/2,−M/2,M)).

Now we are ready to prove lemmas 1 and 2. These will both be proved simultaneously
below, with (once again) the required USAW modifications set off in square brackets.

Lemma 1 [lemma 2]

Proof. Let M = 10 [M = 12]. Consider any proper SAP pattern P = (P1, P2) and
a corresponding choice of aP , bP ,MP and ωP , as defined above. Since MP is even,
R(aP , bP ,MP ) is centred at the vertex r = (r1, r2) ≡ (aP + MP /2, bP + MP /2).

Let G be any SAP [USAW] and y = (y1, y2) any vertex in VG. Define t = t (y) to be the
translation vector in Z

2 such that y = r + t , i.e. t = (y1 − aP − MP /2, y2 − bP − MP /2).
The D that we require is such that D + t = DN ′ = R(y1 − N ′/2, y2 − N ′/2, N ′) with
N ′ = MP + 2M + 4 [N ′ = MP + 2M + 6]. Thus D = R(r1 − N ′/2, r2 − N ′/2, N ′), that is
the square of side length N ′ centred at the vertex r. Note that y ∈ D + t and that ωP + t is a
SAP contained within DMP

⊂ D + t = DN ′ which contains the pattern P + t and has at least
one edge in ∂DMP

.
Since y ∈ D + t = DN ′ , if V∂DN ′ ∩ VG = ∅, then G must be a subgraph of D + t so that

G\(D + t) = ∅. In this case, define G′ to be ωP + t [with one of its edges in ∂DMP
removed

to create a USAW] and the lemma is proved. Otherwise, V∂DK
∩ VG 
= ∅ for all K � N ′.

[Next, for the case of G a USAW, if one or both of the degree one vertices of the USAW
are in VDN ′−2

, create a new USAW G∗, which is the same as G outside DN ′ , by deleting any
path in DN ′ ∩ G that goes from a degree one vertex inside DN ′−2 to a vertex in ∂DN ′ .]

Consider N = MP + M + 4. Then we have MP < N < N ′ and N > 6. Therefore,
lemma 3 can be applied using G [or G∗, if appropriate], y, and DN . Consider G̃ obtained
according to the proof of lemma 3. G̃ is a connected closed [open] Eulerian embedding such
that any vertex of degree 4 of G̃ is contained in ∂DN ∪ ∂DN−2 ∪ ∂DN−4 and G̃ ∩ DN−6 = ∅.

Next consider the SAP ωP + t . (See for example figure 5(a).) By its definition, it is
contained in DMP

and it contains the edge from v ≡ y − (MP /2,MP /2) to v + (0, 1). Create
a new SAP, ω′, from ωP + t by first deleting the edge from v to v + (0, 1) and then adding
the following sequences of edges: (a) the edge from v − (k − 1, 0) to v − (k, 0), for each
k = 1, . . . ,M/2; (b) the edge from v − (k − 1,−1) to v − (k,−1), for each k = 1, . . . , M/2;
and (c) the edge, e, from u ≡ y − ((N − 4)/2,MP /2) to u + (0, 1). (See figure 5(b).) Clearly
ω′ contains P + t , is contained in DN−4, and has only the edge e contained in ∂DN−4. Thus
G̃ can intersect ω′ at the edge e or one or more of its end points but nowhere else.

The goal now is to concatenate G̃ and ω′ to create a new connected embedding, G′′, with
all [except the two endpoints of the USAW] of its vertices even degree. Thus there are three
cases: (1) e is in the edge set of G̃, namely e ∈ EG̃; (2) e /∈ EG̃, however, at least one vertex in
VG̃ is incident on e; or (3) G̃ and ω′ are disjoint graphs. In case (1), to construct G′′ take the
union of the respective vertex and edge sets of G̃ and ω′ but then delete the edge e. In case
(2), take the union of the vertex and edge sets of both graphs to create G′′. In this case, at least
one and at most six vertices of degree 4 exist in VG′′ ∩ V∂DN−4 . In case (3), since e /∈ EG̃ and
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v 
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PMD∂  

PMD∂  w  

u 

(a) (b)

Figure 5. (a) Boundaries of the squares used in the proof of lemmas 1 and 2 are shown. Thin
solid edges represent the boundaries ∂DMP

, ∂DN and ∂DN ′ , while thin dashed edges represent
the boundaries ∂DN−2 and ∂DN−4, as indicated in the diagram. The SAP, ωP + t , lies within
DMP

; an example is indicated using thick solid edges. The thick dotted edges are the ones which
are added to connect ωP + t to the graph G̃ as indicated in the proof of lemmas 1 and 2. (b) The
lower left-hand portion of the corridor given by ∂DN\∂DMP

is magnified to show the details of
the construction outlined in the proof of lemmas 1 and 2. The double hash mark indicates the edge
has been removed between vertices v and v + (0, 1). Also indicated in the diagram are the edge e
from u to u + (0, 1) and the edge f from w to w + (0, 1).

since the edge, f , from w ≡ u − (1, 0) to w + (0, 1) is in EG̃,G′′ can be created by uniting
the edge and vertex sets of the two graphs, deleting the edges e and f , and adding the edge
from u to w and the edge from u + (0, 1) to w + (0, 1) (see figure 5(b)). In all cases, G′′ is
a connected embedding, with only [except for the two endpoints of the USAW] even degree
vertices, which contains P + t within DMP

, and is such that all (except the two endpoints
of the USAW) its vertices outside ∂DN ∪ ∂DN−2 ∪ ∂DN−4 have degree two. Furthermore,
G′′\DN = G̃\DN = G\DN [or G∗\DN , if appropriate].

Finally, lemma 4 can be applied to obtain a SAP [USAW], G′, which is the same as G′′

everywhere except possibly in ∪v=(v1,v2)∈V (∂DN∪∂DN−2∪∂DN−4)R(v1 − M/2, v2 − M/2,M) =
DN+M\DN−4−M . Note that N + M = N ′ [N + M = N ′ − 2] and N − 4 − M = MP .
[Therefore the degree one vertices of the USAW outside DN ′−2 remained untouched.] Thus
G′\DN ′ = G′′\DN ′ = G\DN ′ and G′ contains P + t . �

Lemma 1 establishes cluster axiom 4 for square lattice SAPs and hence the Madras pattern
theorem (theorem 1) will hold for any weight function that satisfies cluster axiom 2 (CA2).
More specifically this proves the following pattern theorem for square lattice SAPs.

Theorem 2. Let wt be any weight function satisfying (CA2) for SAPs and let P be a proper
SAP pattern. Let Gn be the weighted sum over all the square lattice n-SAPs in C∗

n and let
Gn[�m,P ] be the weighted sum over the n-SAPs in C∗

n which contain at most m translates of
P. Then there exists an ε > 0 such that

lim sup
n→∞

(G2n[�εn, P ])
1

2n < λp ≡ lim sup
n→∞

(G2n)
1

2n . (3.6)

Lemma 2 establishes that each proper SAP pattern is also a Madras pattern with respect
to the set of all USAWs. Thus corollary 1 yields a corresponding pattern theorem for USAWs.
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Let U ∗
n denote the set of all n-edge USAWs whose lexicographically smallest vertex is at the

origin.

Theorem 3. Let wt be any weight function satisfying (CA2) for USAWs and let P be a proper
SAP pattern. Let Gn be the weighted sum over all the square lattice n-USAWs in U ∗

n and let
Gn[�m,P ] be the weighted sum over all n-USAWs in U ∗

n which contain at most m translates
of P. Then there exists an ε > 0 such that

lim sup
n→∞

(Gn[�εn, P ])
1
n < λu ≡ lim sup

n→∞
(Gn)

1
n . (3.7)

4. Applications to ISAPs and ISAWs

To illustrate the usefulness of theorems 2 and 3, the specific choice of weights corresponding
to self-interacting SAPs with a nearest-neighbour contact interaction is discussed next.

Given a SAP π in the square lattice, any edge in Z
2 which is not in π but which is incident

on two vertices of π is called a contact edge of π . The number of n-SAPs in C∗
n containing

k contact edges is denoted by pn(k) (note that this is non-zero only for n even). Then the
partition function for self-interacting n-SAPs is given by

Go
n(β) =

∑

k

pn(k) eβk. (4.8)

For this model, it has been proved [8] that the limit

λo(β) ≡ lim
n→∞

[
Go

2n(β)
] 1

2n (4.9)

exists and is finite for all finite β. Thus cluster axiom 3 holds. (Note that the proofs in [8] are
for Z

3 but they extend mutatis mutandis to Z
d , d � 2.)

The corresponding model for self-interacting n-SAWs has the partition function

Gn(β) =
∑

k

cn(k) eβk, (4.10)

where cn(k) is the number of n-step SAWs, starting at the origin, with k contact edges. For
this model, it has been proved [8] for β � 0 that the limit

λ(β) ≡ lim
n→∞[Gn(β)]

1
n (4.11)

exists and is finite and is equal to λo(β). Thus (CA3) holds for β � 0. However, for β > 0
the standard subadditivity argument used to establish the existence of the limit when β � 0
now fails. Thus the proof of (CA3) in this case (β > 0) remains an open problem.

Note that for both cases, the partition function is a weighted sum over a specific
set of clusters with the weight function being given by wt(G) = eβk , where k is the
number of contacts in the cluster G. This choice of weights has the form shown in [7,
equation (1.4)] with zs = 1 and zm = eβ ∈ (0,∞), and as indicated in [7], for any
finite β, such a weight function satisfies (CA2). In fact, for wt(G) = eβk the choice of
γm = emax{−4mβ,4mβ} in equation (2.1) works. To see this, let m be any positive integer. Let
G and G′ be two SAPs (or SAWs) which differ in size by at most m vertices and edges, i.e.
|V (G)\V (G′)| + |V (G′)\V (G)| + |E(G)\E(G′)| + |E(G′)\E(G)|�m. Then to convert G′ to
G one removes the edges in E(G′)\E(G) and the vertices in V (G′)\V (G) and adds in the
vertices in V (G)\V (G′) and the edges in E(G)\E(G′). In so doing, at most 4 contacts are
introduced for each vertex added and at most 1 contact for each edge removed; thus at most
4m contacts are introduced. Similarly, at most 4 contacts are deleted for each vertex removed
and at most 1 contact for each edge added; thus at most 4m contacts are deleted. Hence
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wt(G′) � emax{−4mβ,4mβ}wt(G) and by symmetry wt(G) � emax{−4mβ,4mβ}wt(G′). Thus for
fixed β equation (2.1) is satisfied with γm = emax{−4mβ,4mβ}.

Previous approaches (see [1, section 7.2] and [3, section 5.2]) for obtaining pattern
theorems for interacting SAWs have relied on the subadditivity properties of the logarithm
of the model’s partition function and/or the fact that the limiting free energy is the same for
SAWs and unfolded SAWs. These approaches can be used to establish a pattern theorem for
the model of self-interacting SAWs given above in the case that β � 0 but have not been
successful for β > 0. The previous approaches for obtaining pattern theorems for interacting
SAPs have relied on either relating the limiting free energy for SAPs to that of SAWs or to
that of unfolded SAWs. These approaches have not worked for the self-interacting SAP model
above, in the case β > 0.

In contrast, establishing (CA4) for SAPs in Z
2 did not rely on establishing any relationship

between SAPs and SAWs. Furthermore, since (CA2) holds for wt(G) = eβk for any finite β,
then theorem 2 holds. In particular, given a proper pattern P = (P1, P2), let pn(�m,P, k)

be the number of square lattice n-SAPs in C∗
n with exactly k contact edges and that contain at

most m translates of P. Define

Go
n(�m,P, β) =

∑

k

pn(�m,P, k) eβk. (4.12)

Theorem 2 implies the following.

Theorem 4. Given a proper SAP pattern P = (P1, P2) in Z
2 and any finite β, there exists an

ε > 0 such that

lim sup
n→∞

(
Go

2n(�εn, P, β)
) 1

2n < λo(β). (4.13)

Since the limit in equation (4.9) exists for all finite β, (CA3) is satisfied. Also,
by [7, proposition 3.5], given any fixed finite β, there exists a constant A such that
Go

2n+2(β) � AGo
2n(β) for all sufficiently large n. Then, using the proper SAP patterns U

and V as defined in figure 1 (see also [1, figure 7.4]) along with [7, theorem 2.2], the following
ratio limit theorem is one direct consequence of theorem 4 (for β � 0 this result was also
given in [7, corollary 3.6]):

Corollary 2. For all finite β,

lim
n→∞

Go
2n+2(β)

Go
2n(β)

= [λo(β)]2. (4.14)

Now, given a proper SAP pattern P = (P1, P2), let cn(�m,P, k) be the number of n-
SAWs, starting at the origin, with k contact edges and whose underlying graph (ie associated
USAW) contains at most m translates of P. Define

Gn(�m,P, β) =
∑

k

cn(�m,P, k) eβk. (4.15)

Then, using the fact that there are precisely 2 distinct n-SAWs for each n edge USAW, theorem 3
leads to the following pattern theorem for self-interacting SAWs.

Theorem 5. Given a proper SAP pattern P = (P1, P2) in Z
2 and any finite β, there exists an

ε > 0 such that

lim sup
n→∞

(Gn(�εn, P, β))
1
n < lim sup

n→∞
(Gn(β))

1
n ≡ λ(β). (4.16)

In the case that β � 0, the right-hand side of equation (4.16) is equal to λo(β).
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For β � 0, a ratio limit theorem for SAWs analogous to corollary 2 was given in [7,
corollary 3.6]; however, (CA3) has yet to be proved for β > 0 and thus the corresponding
ratio limit theorem remains unproved for this case.

In summary, although theorems 4 and 5 can be proved by alternate methods for β � 0,
the results above for β > 0 are new. The method of proof used for lemmas 1 and 2 is so far
only applicable to the square lattice since lemma 4 has only been proved for Z

2. It is expected
that a detailed case analysis would lead to similar conclusions for Z

3, however, this has not
been proved. Further consequences of these results will be explored in a subsequent paper.
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[2] Vanderzande C 1998 Lattice Models of Polymers (Cambridge, UK: Cambridge University Press)
[3] Janse van Rensburg E J 2000 The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles

(Oxford: Oxford University Press)
[4] Kesten H 1963 On the number of self avoiding walks J. Math. Phys. 4 960–9
[5] Sumners D W and Whittington S G 1988 Knots in self-avoiding walks J. Phys. A: Math. Gen. 21 1689–94
[6] James E W and Soteros C E 2002 Critical exponents for square lattice trails with a fixed number of vertices of

degree 4 J. Phys. A: Math. Gen. 35 9273–307
[7] Madras N 1999 A pattern theorem for lattice clusters Ann. Comb. 3 357–84
[8] Tesi M C, Janse van Rensburg E J, Orlandini E and Whittington S G 1996 Interacting self-avoiding walks and

polygons in three dimensions J. Phys. A: Math. Gen. 29 2451–63
[9] Soteros C E 2006 Eulerian graph embeddings and trails confined to lattice tubes J. Phys.: Conf. Ser. 42 258–67

http://dx.doi.org/10.1063/1.1704022
http://dx.doi.org/10.1088/0305-4470/21/7/030
http://dx.doi.org/10.1088/0305-4470/35/44/302
http://dx.doi.org/10.1007/BF01608793
http://dx.doi.org/10.1088/0305-4470/29/10/023
http://dx.doi.org/10.1088/1742-6596/42/1/023

	1. Introduction
	2. Brief overview of the Madras general pattern theorem
	3. New pattern theorems for SAPs and SAWs
	4. Applications to ISAPs and ISAWs
	Acknowledgments
	References

